Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython 2nd Edition 21904

Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process.

Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub.

  • Use the IPython shell and Jupyter notebook for exploratory computing
  • Learn basic and advanced features in NumPy (Numerical Python)
  • Get started with data analysis tools in the pandas library
  • Use flexible tools to load, clean, transform, merge, and reshape data
  • Create informative visualizations with matplotlib
  • Apply the pandas groupby facility to slice, dice, and summarize datasets
  • Analyze and manipulate regular and irregular time series data
  • Learn how to solve real-world data analysis problems with thorough, detailed examples

Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process.

Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub.

  • Use the IPython shell and Jupyter for notebook exploratory computing
  • Learn basic and advanced features in NumPy (Numerical Python)
  • Get started with data analysis tools in the pandas library
  • Use flexible tools to load, clean, transform, merge, and reshape data
  • Create informative visualizations with matplotlib
  • Apply the pandas groupby facility to slice, dice, and summarize datasets
  • Analyze and manipulate regular and irregular time series data
  • Learn how to solve real-world data analysis problems with thorough, detailed examples
  • Автор
    Wes McKinney
  • Категорія
    Комп'ютерна література
  • Мова
    Англійська
  • Рік
    2017
  • Сторінок
    524
  • Формат
    170х240 мм
  • Обкладинка
    М'яка
  • Тип паперу
    Офсетний
  • Ілюстрації
    Чорно-білі
  • Термін поставки
    10 дней
620 ₴
Купити
Відділення Нова Пошта80 ₴
Поштомат Нова Пошта80 ₴
Кур’єр Нова Пошта120 ₴
Відділення УкрПошта50 ₴
Кур’єр за адресою90 ₴
Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython 2nd Edition - фото 1
21904
Залиште свій відгук про книгу,
допоможіть тим, хто ще не читав