Strengthening Deep Neural Networks: Making AI Less Susceptible to Adversarial Trickery 1st Edition 29917

As deep neural networks (DNNs) become increasingly common in real-world applications, the potential to deliberately "fool" them with data that wouldn’t trick a human presents a new attack vector. This practical book examines real-world scenarios where DNNs—the algorithms intrinsic to much of AI—are used daily to process image, audio and video data.

Author Katy Warr considers attack motivations, the risks posed by this adversarial input, and methods for increasing AI robustness to these attacks. If you’re a data scientist developing DNN algorithms, a security architect interested in how to make AI systems more resilient to attack, or someone зачарований by the differences between artificial and biological perception, this book is for you.

  • Delve into DNNs and discover how they could be tricked by adversarial input
  • Investigate methods used to generate adversarial input capable of fooling DNNs
  • Explore real-world scenarios and model the adversarial threat
  • Evaluate neural network robustness; learn methods to increase resilience of AI systems to adversarial data
  • Examine some ways in which AI might become better at mimicking human perception in years to come

About the Author

  • Автор
    Katy Warr
  • Категорія
    Комп'ютерна література
  • Мова
    Англійська
  • Рік
    2019
  • Сторінок
    246
  • Формат
    170х240 мм
  • Обкладинка
    М'яка
  • Тип паперу
    Офсетний
1898 ₴
Відділення Нова Пошта80 ₴
Поштомат Нова Пошта40 ₴
Кур’єр Нова Пошта120 ₴
Відділення УкрПошта50 ₴
Кур’єр за адресою90 ₴
Strengthening Deep Neural Networks: Making AI Less Susceptible to Adversarial Trickery 1st Edition - фото 1
29917
Залиште свій відгук про книгу,
допоможіть тим, хто ще не читав