Глубокое обучение: готовые решения 77
Технология глубокого обучения не настолько сложна, как многие считают. До недавнего времени на ее изучение уходили годы, но с появлением таких фреймворков, как Keras и TensorFlow, инженеры-программисты, не имеющие опыта в данной области, могут быстро начать создавать рабочие приложения. Благодаря готовым примерам, приведенным в книге, вы научитесь решать задачи, связанные с классификацией и генерированием текста, изображений и музыки.
В каждой главе описывается несколько решений, объединяемых в единый проект, например приложение, реализующее тренировку музыкальной рекомендательной системы. Также имеется глава с описанием методик, которые в случае необходимости помогут выполнить отладку нейронной сети. Все примеры написаны на языке Python и доступны в виде набора блокнотов.
Основные темы книги:
- Использование векторных представлений слов для вычисления схожести текстов
- Построение рекомендательной системы фильмов на основе ссылок в Википедии
- Визуализация внутренних состояний нейронной сети
- Создание модели, рекомендующей эмодзи для фрагментов текста
- Повторное использование предварительно обученных сетей для создания службы обратного поиска изображений
- Генерирование пиктограмм с помощью генеративно-состязательных сетей (GAN), автокодировщиков и рекуррентных сетей (RNN)
- Распознавание музыкальных жанров и индексирование коллекций песен
Давид Осинга — опытный инженер-программист, ранее работавший в Google, основатель трех стартапов.
Ведет популярный сайт программных проектов, посвященный в том числе машинному обучению.
- АвторДавид Осинга
- КатегоріяПрограмування
- МоваРосійська
- Рік2020
- Сторінок288
- Формат170х240 мм
- ОбкладинкаМ'яка
- Тип паперуОфсетний
- ІлюстраціїЧорно-білі
- ПерекладачА. Гузикевич
- СеріяO'Reilly
- ЖанрМови програмування
допоможіть тим, хто ще не читав