Practical Weak Supervision: Doing More with Less Data. 1st Ed. 47803

Most data scientists and engineers today rely on quality labeled data to train machine learning models. But building a training set manually is time-consuming and expensive, leaving many companies with unfinished ML projects. There's a more practical approach. In this book, Wee Hyong Tok, Amit Bahree, and Senja Filipi show you how to create products using weakly supervised learning models.
You'll learn how to build natural language processing and computer vision projects using weakly labeled datasets from Snorkel, a spin-off from the Stanford AI Lab. Because so many companies have pursued ML projects that never go beyond their labs, this book also provides a guide on how to ship the deep learning models you build.
  • Get up to speed on the field of weak supervision, including ways to use it as part of the data science process
  • Use Snorkel AI for weak supervision and data programming
  • Get code examples for using Snorkel to label text and image datasets
  • Use a weakly labeled dataset for text and image classification
  • Learn practical considerations for using Snorkel with large datasets and using Spark clusters to scale labeling
  • Автор
    Wee Hyong Tok, Amit Bahree
  • Категорія
    Комп'ютерна література
  • Мова
    Англійська
  • Рік
    2021
  • Сторінок
    200
  • Формат
    180х235 мм
  • Обкладинка
    М'яка
  • Тип паперу
    Офсетний
  • Ілюстрації
    Чорно-білі
  • Номер видання
    1-е вид.
  • Вага, г
    310
  • Жанр
    Аналіз данихМашинне навчання
  • Вік
    16+
2600 ₴
Купити
Відділення Нова Пошта80 ₴
Поштомат Нова Пошта40 ₴
Кур’єр Нова Пошта120 ₴
Відділення УкрПошта50 ₴
Кур’єр за адресою90 ₴
Practical Weak Supervision: Doing More with Less Data. 1st Ed. - фото 1
47803
Залиште свій відгук про книгу,
допоможіть тим, хто ще не читав